Technical College of the Lowcountry
921 Ribaut Rd.
Beaufort, SC  29901

Vicki Daniel
4/113
525-8230
vdaniel@tcl.edu

UTH 205
Physical Therapy
Functional Anatomy
SP 2016

PTH 205 Spring 2016
Course Description
PTH 205 Physical Therapy Functional Anatomy
4 Credit Hours (3.0 Lecture, 3.0 Lab)
Prerequisites: BIO 210, MAT 120, PSY 201, ENG 101, PTH 101.
Corequisites: BIO 211, ENG 102, PTH202.

Course Lecture: 4/128
T/TH 10:30-12:00p

Course Lab: 4/122
T 1:00-4:00p

Course Focus
This course introduces the basic concepts and principals of muscles, joints and motion, including traditional testing procedures.

Text and References

Course Objectives
* Designates Critical Outcomes

Chapter 1: Basic Information
At the completion of this chapter, the student will be able to:
1. Identify and use appropriate terminology pertinent to kinesiology. *
2. Describe how the body is divided into segments and how that relates to the concept of arthrokinematic motion.
3. Describe and give examples (both inside and outside the body) of both linear and angular motion.
4. Define osteokinematics as it relates to joint motion and differentiate the terms used to describe joint motion throughout the body (e.g., flexion, extension). *
Chapter 2: Skeletal System
At the completion of this chapter, the student will be able to:
1. Identify skeletal anatomy and function of the skeletal system. *
2. Differentiate the axial and appendicular skeletons.
3. Recognize the different types of bones found in the body, including the sesamoid bones, and define broad categories of bone markings (depression and openings, projections or processes).
4. Identify common skeletal pathologies. *

Chapter 3: Articular System
At the completion of this chapter, the student will be able to:
1. Identify joint anatomy and the function of the articular system. *
2. Define and give examples of the different types of joints found in the body. *
3. Describe and demonstrate the major planes and axes of the body.
4. Define the term degrees of freedom and explain its clinical significance in terms of gross anatomy function. *
5. Define common pathologies of structures making up the articular system. *

Chapter 4: Arthrokinematics
At the completion of this chapter, the student will be able to:
1. Define and provide examples of the different types of end feel in a joint. *
2. Differentiate between osteokinematic motion (joint motion) and arthrokinematic motion (joint surface motion). *
3. Identify and use appropriate accessory motion terminology. *
4. Describe the two different joint surface shapes.
5. Define and be able to demonstrate the three types of arthrokinematic motion (roll, glide, and spin). *
6. Discuss the convex-concave law and appreciate the clinical significance of this law.
7. Differentiate between the close-packed and the open-packed positions of a joint and the clinical significance of each. *
8. Identify and be able to demonstrate the accessory motion forces of traction, approximation, and shear. *

Chapter 5: Muscular System
At the completion of this chapter, the students will be able to:
1. Identify muscular anatomy and function of the muscular system. *
2. Define the terms origin, insertion, and reversal of muscle action.
3. Describe and give examples of ways in which muscles are named (shape, action, origin, etc.).
4. Define the different types of muscle fiber arrangement and discuss the clinical significance of these different arrangements.
5. Differentiate between the four functional characteristics of muscle tissue. *
6. Define the term length-tension relationship as it applies to muscles and discuss relevant characteristics of active insufficiency, passive insufficiency, stretching, and tenodesis.
7. Identify the three types of muscle contraction (ISOM, ISOT, ISOK) and be able to demonstrate or provide examples of each. *
8. Define the four roles of muscles and identify the role of various muscle groups for a given gross motor activity.
9. Explain the clinical significance of “angle of pull” for a specific muscle or muscle group.
10. Differentiate between closed and open kinetic chain activities and demonstrate or describe examples of each type. *
Chapter 6: Nervous System
At the completion of this chapter, the student will be able to:
1. Identify nervous system anatomy and function of the various structures within the nervous system. *
2. Locate and discuss major components of the central nervous system.
3. Locate and discuss major components of the peripheral nervous system.
4. Describe the functional significance of spinal cord level in terms of rehabilitative potential of specific muscle groups. *
5. Identify the three major plexuses (cervical, brachial, and lumbosacral), the major nerves arising from each, and the clinical motor features of paralysis of specific nerves. *
6. Define some common central nervous system pathologies.
7. Discuss some common peripheral nerve pathologies that may be seen in clinical practice. *

Chapter 7: Circulatory System
At the completion of this chapter, the student will be able to:
1. Identify circulatory system anatomy and function of the various structures within the cardiovascular system. *
2. Identify circulatory system anatomy and function of the various structures within the lymphatic system.
3. Define some common pathologies of the circulatory system. *

Chapter 8: Basic Biomechanics
At the completion of this chapter, the student will be able to:
1. Describe and give examples of Newton’s three laws of motion. *
2. Define several mechanical terms related to the study of biomechanics. *
3. Discuss different types of forces and give examples both internal and external to the body. *
4. Define a force couple as it relates to forces.
5. Define torque and appropriate terminology related to this concept.
6. Define the term state of equilibrium and recognize various entities affecting this state such as gravity, center of gravity, and base of support. *
7. Differentiate between stable equilibrium, unstable equilibrium, and neutral equilibrium.
8. Identify the different types of simple machines both within the body and used in clinical practice (levers, pulleys, wheel and axle, inclined plane). Students will be able to give examples of each and delineate first-, second-, and third-class levers, demonstrating exercise examples of each and describing factors that can change a lever’s class.

Chapter 9: Shoulder Girdle at the completion of this chapter, the student will be able to:
1. Identify key bones and bony landmarks of the shoulder girdle.
2. Recognize the joints and primary ligaments that comprise the shoulder girdle.
3. Describe joint motions that occur at the shoulder girdle. *
4. Recognize the companion motions of the shoulder girdle that must occur with shoulder joint motion. *
5. Define scapulohumeral rhythm and appreciate the clinical significance of this concept. *
6. Describe the muscle origin, insertion, action, and nerve innervation of selected muscles of the shoulder girdle.
7. Identify the muscles that form the force couples responsible for upward and downward rotation of the scapula of the shoulder girdle.
8. Recognize reversal of muscle action of select shoulder girdle muscles and the clinical significance of such action.
Chapter 10: Shoulder Joint
At the completion of this chapter, the student will be able to:
1. Identify key bones and bony landmarks of the shoulder joint.
2. Recognize the joints, primary ligaments, and other structures that comprise the shoulder joint. *
3. Describe joint motions that occur at the shoulder joint in terms of appropriate plane and axis, and the range of degrees of normal motion. *
4. Describe the muscle origin, insertion, action, and nerve innervation of selected muscles of the shoulder joint.
5. Explain the anatomical relationship between the shoulder girdle and shoulder joint. *
6. Define common pathologies of structures around the shoulder joint. *

Chapter 11: Elbow Joint
At the completion of this chapter, the student will be able to:
1. Identify key bones and bony landmarks of the elbow joint.
2. Recognize the joints and primary ligaments that comprise the elbow joint.
3. Describe joint motions that occur at the elbow joint and the proximal and distal radioulnar joints in terms of appropriate plane and axis and the range of degrees of normal motion at these joints. *
4. Define the carrying angle at the elbow, and how it differs in males and females.
5. Describe the muscle origin, insertion, action, and nerve innervations of selected muscles of the elbow joint and radioulnar joints.
6. Define common pathologies of structures around the elbow joint. *

Chapter 12: Wrist Joint
At the completion of this chapter, the student will be able to:
1. Recognize the joints and primary ligaments that comprise the wrist joint.
2. Describe joint motions that occur at the wrist joint in terms of appropriate plane and axis and the range of degrees of normal motion at this joint. *
3. Identify key bones and bony landmarks of the wrist joint.
4. Describe the muscle origin, insertion, action, and nerve innervation of selected muscles of the wrist joint.

Chapter 13: Hand
At the completion of this chapter, the student will be able to:
1. Describe joint motions that occur at the fingers and thumb in terms of appropriate plane and axis, and the range of degrees of normal motion at these joints. *
2. Identify key bones and bony landmarks of the hand.
3. Recognize the joints, primary ligaments, and other structures that comprise the hand.
4. Describe the muscle origin, insertion, action, and nerve innervations of selected extrinsic and intrinsic muscles of the hand.
5. Differentiate between the two basic types of prehension (power and precision) and demonstrate examples of each based on a desired activity. *
6. Define common pathologies of structures around the wrist and hand. *

Chapter 14: Temporomandibular Joint
At the completion of this chapter, the student will be able to:
1. Describe joint motions that occur at the temporomandibular joint in terms of appropriate plane and axis and the range of normal motion. *
2. Identify key bones and bony landmarks of the temporomandibular joint.
3. Recognize the joints, primary ligaments, and other structures that comprise the temporomandibular joint. *
4. Describe the muscle origin, insertion, action, and nerve innervations of selected muscles of the temporomandibular joint.

**Chapter 15: Neck and Trunk**
At the completion of this chapter, the student will be able to:
1. Discuss the various functions of the vertebral column and the significance of the vertebral curves. *
2. Describe joint motions that occur at the neck and trunk in terms of appropriate plane and axis and the range of degrees of normal motion throughout the spine. *
3. Identify key bones and bony landmarks of the neck and trunk.
4. Recognize the joints and primary ligaments that comprise the neck and trunk.
5. Describe the muscle origin, insertion, action, and nerve innervations of selected muscles of the neck and trunk.
6. Define common pathologies of structures around the neck and trunk. *

**Chapter 16: Respiratory System**
At the completion of this chapter, the student will be able to:
1. Identify key bones, ligaments, and bony landmarks of structures relevant to respiration.
2. Correlate thorax movement with the mechanics of inspiration and expiration. *
3. Define the different phases of respiration and key muscle groups responsible for these different phases. *
4. Describe the origin, insertion, action, and innervations of selected muscles pertinent to the act of respiration.
5. Differentiate between diaphragmatic and chest breathing. *
6. Describe the Valsalva maneuver and its effects on the cardiovascular system. *
7. Define common pathologies of structures involved with the respiratory system. *

**Chapter 17 Learning Objectives: Pelvic Girdle**
At the completion of this chapter, the student will be able to:
1. Identify key bones and bony landmarks of the pelvic girdle.
2. Recognize the joints and primary ligaments that comprise the pelvic girdle.
3. Describe joint motions that occur at the pelvic girdle in terms of appropriate plane. *
4. Differentiate among the different force couples (muscle groups) that act to produce the different motions of the pelvic girdle. *

**Chapter 18: Hip Joint**
At the completion of this chapter, the student will be able to:
1. Describe joint motions that occur at the hip joint in terms of appropriate plane and axis and the range of degrees of normal motion. *
2. Identify key bones and bony landmarks of the hip joint.
3. Recognize the primary ligaments and other structures that comprise the hip joint.
4. Describe the muscle origin, insertion, action, and nerve innervations of selected muscles of the hip joint.
5. Define common hip pathologies involving structures around the hip joint. *

**Chapter 19: Knee Joint**
At the completion of this chapter, the student will be able to:
1. Describe joint motions that occur at the knee joint in terms of appropriate plane and axis, and the range of degrees of normal motion, and be able to demonstrate the “screw home mechanism” that occurs at the knee. *
2. Identify key bones and bony landmarks of the knee joint.
3. Recognize the joint, primary ligaments, and other structures that comprise the knee joint.
4. Describe the muscle origin, insertion, action, and nerve innervations of selected muscles of the knee joint.
5. Define common knee pathologies involving structures around the knee joint. *

**Chapter 20: Ankle Joint and Foot**
At the completion of this chapter, the student will be able to:
1. Identify key bones and bony landmarks of the ankle and foot joints.
2. Locate the three function divisions of the foot (hindfoot, midfoot, and forefoot) and discuss the clinical significance of each. *
3. Recognize the joints, primary ligaments, and other structures that comprise the ankle joints and the foot.
4. Describe joint motions that occur at these joints in terms of appropriate plane and axis, and the range of degrees of normal motion at these joints. *
5. Describe the muscle origin, insertion, action, and nerve innervations of selected muscles of these joints.
6. Define common pathologies that involve structures around the ankle. *

**Chapter 21: Posture**
At the completion of this chapter, the student will be able to:
1. Trace the development of the postural curves and the influence of the position of the pelvis on these postural curves.
2. Identify key points of alignment for observing standing posture from the following:
   Lateral view, Anterior view, Posterior view. *
3. Identify key postural considerations for optimal sitting posture. *
4. Identify key postural considerations for optimal supine posture. *
5. Discuss implications of common postural deviations in terms of stress or structures around the spine. *

**Chapter 22: Gait**
At the completion of this chapter, the student will be able to:
1. Define and utilize appropriate terminology relating to gait.
2. Describe key components (joint ROM and muscle action) that occur during the stance phase of gait. *
3. Describe key components (joint ROM and muscle action) that occur during the swing phase of gait. *
4. Identify other determinants that affect gait (displacement of center of gravity, arm swing). *
5. Recognize key qualities of typical gait that occur both with young children and elderly adults.
6. Identify or describe common atypical gaits caused by the following: Muscle weakness or paralysis, Joint muscle ROM limitation, Neurological involvement, Pain, Unequal leg length*

**Student Contributions**
Classes are designed to employ a variety of teaching techniques. In order to maximize learning, required readings and Web enhanced sections should be done prior to class. If a student is falling behind in laboratory performance and/or academic achievement, it is imperative to seek immediate assistance from the instructor.

**Laboratory Requirements**
Each student is required to actively participate in laboratory sessions by practicing the application of palpation skills on fellow classmates. Appropriate and professional behavior is expected at all times in the laboratory setting. Solid colored shorts and solid colored tank tops are the required attire for all laboratory activities. Clothing must plain (i.e. devoid of pictures, lettering, or designs). A solid colored sweatshirt or solid colored sweatpants may be worn over these if such clothing does not interfere with
the laboratory activities. Students may wear TCL logoed attire to lab. Clothing must allow access to various parts of the body during specified laboratory activities. Male students may be required to remove their shirt. Failure to comply with the dress code will result in dismissal from the lab, resulting in an absence.

In order to perform at a satisfactory level in the laboratory area, students must be prepared each lab session to do the following.

1. Arrive on time and in proper attire;
2. Complete laboratory assignments on time and in the prescribed manner;
3. Perform physical therapy techniques safely and competently;
4. Accurately perform physical therapy skills and procedures learned in campus lab;
5. Correctly apply all previously mastered knowledge, skills, and abilities.

**Physical Therapy laboratory.** Learning experiences in the physical therapy laboratory provide an opportunity for the student to become familiar with equipment and techniques. The student utilizes the physical therapy laboratory to practice new skills. Skills must be practiced in the laboratory before being used in the clinical setting. Competence must be demonstrated in the physical therapy laboratory. Students are responsible for material covered in campus laboratory. In order to progress in the course and program, by the end of the course each student MUST achieve a satisfactory skill criterion and demonstrate competence in laboratory skills. Competency skill checks and laboratory practicals are given to assist in the evaluation of individual student progress and to support student success. The student is responsible for maintaining their skill competency check lists and turning them in to the instructor as required.

At the conclusion of each laboratory experience, the student’s lab performance is evaluated. The student is awarded 1 point for each satisfactory performance and 0 points if performance is unsatisfactory. The student’s performance is evaluated based on environmental contribution, attendance, and preparedness. Expectations include:

1. Contributing to a productive learning environment for self and others by
   a. being prepared for the lab activities by reading and watching DVD if applicable
   b. answering questions and identifying steps or processes about skill
   c. demonstrating mastery of skills
   d. remaining attentive
2. Arriving and departing on time. Attendance is expected for each scheduled laboratory experience.

See **Course Evaluation** for point requirements in this course.

**COURSE EVALUATION**

<table>
<thead>
<tr>
<th>EVALUATION</th>
<th>Number of Assignments</th>
<th>Points Assigned</th>
<th>Percentage of Weighted Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Quizzes</td>
<td>10</td>
<td>10/each quiz</td>
<td>11%</td>
</tr>
<tr>
<td>Lab Skills Checks</td>
<td>As assigned Per lab</td>
<td>0</td>
<td>Satisfactory Completion</td>
</tr>
<tr>
<td>Campus Lab Performance</td>
<td>Per lab</td>
<td>1 point/per lab</td>
<td>Satisfactory Completion</td>
</tr>
</tbody>
</table>
Campus Lab Midterm Practical  | 1 | 100 | 11%
Campus Lab Final Practical  | 1 | 200 | 21%
Class Exams                | 3 | 100/each exam | 31%
Cumulative Final Exam      | 1 | 250  | 26%

**Total**  | 950 | 100%

| Campus Labs must be satisfactory to pass the course. | Satisfactory = minimum 75% of points
| Laboratory Skills Checks must be satisfactory to pass the course. | Satisfactory = instructor check off after a maximum of 2 attempts.
| Campus Laboratory Practical(s) | Final grade must be 75% in order pass the course.

**GRADING POLICY**

| Grading scale | W withdraw | WP withdraw with passing grade |
| 90% - 100% A | WF withdraw with failing grade |
| 82% - 89% B | I Incomplete |
| 75% - 81% C | |
| 70% - 74% D | |
| Below 70% F | |

**Grading Methodology.** The final grade must be **75.00%** or more in order to pass the course and progress in the program. Campus Lab Performance must be satisfactory to pass the course. Campus lab skills checks must be satisfactory to pass the course. Campus lab practical's must receive a passing grade to pass the course.

At the conclusion of each laboratory experience, the student’s performance is evaluated. The student is awarded 1 point for each satisfactory lab and 0 points if performance is unsatisfactory. The student’s performance is evaluated based on environmental contribution, attendance, and preparedness. The student must achieve 75% of available lab points to pass the lab portion of the class.

Each student must demonstrate safety and competence in required laboratory skills. Students are responsible for insureing that the assigned laboratory skills are checked off by the instructor. Students will be given 1 opportunity retake each skill check. In addition, the student must pass the practical exam(s) and score 75% or greater in order to pass the course. Should the student fail the practical exam, they will be given one opportunity to retake the exam. The highest possible score on retaking the exam is 75.00%. Non-compliance with a critical safety criterion will result in an automatic failure on skills checks as well as practical exams.

Students absent from an examination (quiz, test and final exam) or skills check/practical will receive a “0” grade for the examination/skills check/practical unless other arrangements are made with the individual instructor prior to the examination or skills check/practical day or on the examination or skills check/practical day before the examination/ skills check/practical is scheduled to be given. It is the responsibility of the student to contact the appropriate instructor to arrange to make up the
examination/skills check/practical. Arrangements may be completed by telephone. If the instructor is not available, a message should be left on the instructor’s voice mail first AND with another member of the core faculty, and at last resort, the Division of Health Sciences administrative assistant. The instructor will decide the time and method of make-up examinations/presentation on an individual basis. Messages sent by other students are unacceptable. The student is responsible for notifying the instructor of the reason for the absence. Grades are posted on Blackboard within one week of administration of tests and examinations. No rounding of numbers will be used to calculate any grades. If the student scores lower than a 75% on a test or an assignment, **it is the student’s responsibility** to contact the instructor to arrange a meeting to discuss learning strategies and or actions/indicators to improve performance on course evaluation measures.

**TEST REVIEW**
Tests will be reviewed in class and discussion will be limited to the right answer. **Students will not be allowed to take any written notes, use electronic devices to take notes or make an image of the tests. All items have to be removed from the desk/table top during the test review.** For any discussion beyond the right answer, set up an appointment with the instructor to further discuss.

Prior to the final exam, test review will be done during the last class of the semester. All items have to be removed from desk/table top during the test review. No notes can be taken and no electronic devices can be used to take notes or make images of the tests. This is an opportunity to ask questions about concepts that you do not understand. If individualized time is need for test review, an appointment can be made with the instructor, but **not** during exam week and the time limit will be 10 minutes. All tests will be reviewed under the supervision of an instructor. Students cannot bring any class notes with them.

**ADA STATEMENT**
The Technical College of the Lowcountry provides access, equal opportunity and reasonable accommodation in its services, programs, activities, education and employment for individuals with disabilities. To request disability accommodation, contact the counselor for students with disabilities at (843) 525-8219 or (843) 525-8242 during the first ten business days of the academic term.

**ATTENDANCE**
1. The College’s statement of policy indicates that students must attend **ninety percent** of total class hours or they will be in violation of the attendance policy.
2. Students not physically attending class during the first ten calendar days from the start of the semester must be dropped from the class for **NOT ATTENDING**.
3. Students taking an online/internet class must sign in **and** communicate with the instructor within the first ten calendar days from the start of the semester to indicate attendance in the class. Students not attending class during the first ten calendar days from the start of the semester must be dropped from the class for **NOT ATTENDING**.
4. Reinstatement requires the signature of the division dean.
   a. In the event it becomes necessary for a student to withdraw from the course **OR if a student stops attending class,** it is the student’s responsibility to initiate and complete the necessary paperwork. Withdrawing from class may have consequences associated with financial aid and time to completion.
   b. When a student exceeds the allowed absences, the student is in violation of the attendance policy. The instructor MUST withdrawal the student with a grade of “W”, “WP”, or “WF” depending on the date the student exceeded the allowed absences and the student’s progress up to the last date of attendance **or**
c. under extenuating circumstances and at the discretion of the faculty member teaching the class, allow the student to continue in the class and make-up the work. This exception must be documented at the time the allowed absences are exceeded.
d. Absences are counted from the first day of class. There are no "excused" absences. All absences are counted, regardless of the reason for the absence.

5. A student must take the final exam or be excused from the final exam in order to earn a non-withdrawal grade.

6. Students are expected to be in class on time. Arrival to class after the scheduled start time or leaving class prior to dismissal counts as a tardy. Three tardies and/or early departures are considered as one absence unless stated otherwise. Instructor must be notified prior to start of class by call, text or email if the student is going to be late.

7. It is the student’s responsibility to sign the roll sheet (if used) or verify attendance with instructor upon entering the classroom. Failure to sign the roll/verify attendance results in a recorded absence. In the event of tardiness, it is the student’s responsibility to insure that attendance is marked. The student is responsible for all material/announcements presented, whether present or absent.

8. Continuity of classroom and laboratory (which includes clinical experiences) is essential to the student’s progress in providing safe and competent patient care. Students are expected to use appropriate judgment for participating in clinical activities. To evaluate the student’s knowledge and skills, it is necessary for the student to be present for all classroom, laboratory and clinical experiences. If absence does occur, the designated instructor, other core faculty, or the Division of Health Sciences administrative assistant (in that order), must be notified by telephone no later than 30 minutes prior to the start of class, lab or clinical experiences. The Division of Health Sciences telephone number is 843-525-8267.

A copy of TCL’s STATEMENT OF POLICY NUMBER: 3-1-307 CLASS ATTENDANCE (WITHDRAWAL) is on file in the Division Office and in the Learning Resources Center.

HAZARDOUS WEATHER
In case weather conditions are so severe that operation of the College may clearly pose a hardship on students and staff traveling to the College, notification of closing will be made through the following radio and television stations: WYKZ 98.7, WGCO 98.3, WGZO 103.1, WFXH 106.1, WWVV 106.9, WLOW 107.9, WGZR 104.9, WFXH 1130 AM, WLVH 101.1, WSOK 1230 AM, WAEV 97.3, WTOC TV, WTGS TV, WJWJ TV, and WSAV TV. Students, faculty and staff are highly encouraged to opt in to the Emergency Text Message Alert System. www.tcl.edu/textalert.asp

ACADEMIC MISCONDUCT
There is no tolerance at TCL for academic dishonesty and misconduct. The College expects all students to conduct themselves with dignity and to maintain high standards of responsible citizenship. It is the student’s responsibility to address any questions regarding what might constitute academic misconduct to the course instructor for further clarification.

The College adheres to the Student Code for the South Carolina Technical College System. Copies of the Student Code and Grievance Procedure are provided in the TCL Student Handbook, the Division Office, and the Learning Resources Center.

Health care professionals hold the public trust. Academic misconduct by health science students calls that trust into question and academic integrity is expected.

It is a fundamental requirement that any work presented by students will be their own. Examples of academic misconduct include (but are not limited to):
1. copying the work of another student or allowing another student to copy working papers, printed output, electronic files, quizzes, tests, or assignments.
2. completing the work of another student or allowing another student to complete or contribute to working papers, printed output, electronic files, quizzes, tests, or assignments.
3. viewing another student’s computer screen during a quiz or examinations.
4. talking or communicating with another student during a test.
5. violating procedures prescribed by the instructor to protect the integrity of a quiz, test, or assignment.
6. plagiarism in any form, including, but not limited to: copying/pasting from a website, textbook, previously submitted student work, or any instructor-prepared class material; obvious violation of any copyright-protected materials.
7. knowingly aiding a person involved in academic misconduct.
8. providing false information to staff and/or faculty.
9. entering an office unaccompanied by faculty or staff.
10. misuse of electronic devices.

RECORDING DEVICES/CELL PHONES
Students are not allowed to use recording devices during any lectures, lab, or clinical periods. Moreover, students must have cell phones turned off (not on vibrate) during lectures and lab times. If for any reason a cell phone rings or vibrates during lecture or lab, the student will receive a grade reduction per occurrence after the first warning. Students are not allowed to have their cell phone, iPod, or any other electronic device at their clinical rotations. Violation of the rules/requirements listed above will be reason for dismissal from the Physical Therapy Assistant program.

Course Coordinator: Vicki Daniel, DPT, Program Director
OFFICE LOCATION: Building 4 Room 113
PHONE NUMBER: 843-525-8230
OFFICE HOURS: As posted, by appointment
Email: vdanield@tcl.edu
Acknowledgement of PTH205 Physical Therapy Functional Anatomy Syllabus

Instructors Name: Vicki Daniel

I, understand it is my responsibility to read the Spring 2016 Syllabus for PTH205 Physical Therapy Functional Anatomy.

Students should read the Syllabus and/or Addendums and make notes of any questions they may wish to ask. This will allow the students to have a better understanding of the expectation of class, program, and its faculty. Students are always notified when updates have been made as they will be asked to sign additional Acknowledgement Sheets.

Students will be required to print a copy of the entire Syllabus and/or Addendum to be included in their clinical education notebook.

Students will be expected to sign this statement indicating they have read and understand the PTH205 Physical Therapy Functional Anatomy Syllabus and/or Addendum.

_________________________________________  _____________________
Signature                                      Date